
Sigil2 Documentation
Release 0.1.0

Michael Lui

Mar 07, 2018

Contents

1 Quickstart 3
1.1 Building Sigil2 . 3
1.2 Running Sigil2 . 3
1.3 Dependencies . 4

2 Overview 5
2.1 Workloads . 5
2.2 Event Generation . 6

3 User Documentation 9
3.1 The Analysis Backend . 9
3.2 The Profiling Frontend . 9
3.3 FAQ . 10

4 Backend Documentation 11
4.1 SimpleCount . 11
4.2 SynchroTraceGen . 11

5 Frontend Documentation 13
5.1 Valgrind . 13
5.2 DynamoRIO . 15
5.3 Intel Process Trace . 16

6 Developer Documentation 17

7 About 19
7.1 Why call it Sigil2? . 19

8 Features 21

9 Installation 23

10 Contribute 25

11 Support 27

12 License 29

i

Bibliography 31

ii

Sigil2 Documentation, Release 0.1.0

Sigil2 is a framework for observing and analyzing applications.

Contents 1

Sigil2 Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Quickstart

This document will go through building and running Sigil2.

1.1 Building Sigil2

Note: The default compiler for CentOS 7 and older (gcc <5) does not support C++14. Install and enable the offical
Devtoolset before compiling.

Clone and build Sigil2 from source:

$ git clone https://github.com/VANDAL/sigil2
$ cd sigil2
$ mkdir build && cd build
$ cmake{3} .. # CentOS 7 requires cmake3 package
$ make -j

This creates a build/bin folder containing the sigil2 executable. It can be run in place, or the entire bin folder
can be moved, although it’s not advised to move it to a system location.

1.2 Running Sigil2

Sigil2 requires at least two arguments: the backend analysis tool, and the executable application to measure:

$ bin/sigil2 --backend=stgen --executable=./mybinary

The backend is the analysis tool that will process all the events in mybinary. In this example, stgen is the
backend that processes events into a special event trace that is used in SynchroTrace.

More information on backends are in The Analysis Backend.

3

https://www.softwarecollections.org/en/scls/rhscl/devtoolset-6/
http://vlsi.ece.drexel.edu/index.php/SynchroTrace/

Sigil2 Documentation, Release 0.1.0

A third option frontend will change the underlying method for observing the application. By default, this is
Valgrind:

$ bin/sigil2 --frontend=valgrind --backend=stgen --executable=./mybinary

Available frontends are discussed in The Profiling Frontend.

1.3 Dependencies

PACKAGE VERSION
gcc/g++ 5+
cmake 3.1.3+
make 3.8+
automake 1.13+
autoconf 2.69+
zlib 1.27+
git 1.8+

4 Chapter 1. Quickstart

http://valgrind.org/

CHAPTER 2

Overview

Sigil2 is a framework designed to help analyze the dynamic behavior of applications. We call this dynamic behav-
ior, with its given inputs and state, the workload. Having this workload is very useful for debugging, performance
profiling, and simulation on hardware. Sigil2 was born from the need to generate application traces for trace-driven
simulation, so low-level, detailed traces are the primary use-case.

2.1 Workloads

One of the main goals behind Sigil2 is providing a straightforward interface to represent and analyze workloads. A
workload can be represented in many ways, and each way has different requirements.

. . . you might represent a workload as a simple assembly instruction trace:

push %rbp
push %rbx
mov %rsi,%rbp
mov %edi,%ebx
sub $0x8,%rsp
callq 4377b0 <_Z17myfuncv>
callq 4261e0 <_ZN5myotherfunc>
mov %rbp,%rdx
mov %ebx,%esi
mov %rax,%rdi
callq 422460 <_ZN5GO>
add $0x8,%rsp
xor %eax,%eax
pop %rbx
pop %rbp
retq

. . . or you might represent a workload as a call graph:

. . . or you might represent a workload as a memory trace:

5

https://en.wikipedia.org/wiki/Microarchitecture_simulation
https://en.wikipedia.org/wiki/Microarchitecture_simulation

Sigil2 Documentation, Release 0.1.0

ADDR BYTES
0xdeadbeef 8
0x12345678 4
0x00000000 1
...

. . . or more complex representations. Each of these representations are made up of the same event categories, albeit at
different levels of granularity.

2.1.1 Event Primitives

Because of the variety of use-cases for analyzing workloads, Sigil2 decided to present workloads as a set of extensible
primitives.

Event Primitive Description
Compute some transformation of data
Memory some movement of data
Control Flow divergence in an event stream
Synchronization ordering between separate event streams
Context grouping of events

The format of these events is not defined, but you can imagine that events would look like:

...
compute FLOP, add, SIMD4
memory write, 4B, <addr1>
memory read, 16B, <addr2>
context func, enter, hello_world_thread
sync create, <TID1>
...

Todo: More detail is discussed futher in ???

2.2 Event Generation

Many tools exist to capture workloads:

• static instrumentation tools

– PEBIL

– LLVM (e.g. Contech)

• DYNAMIC BINARY INSTRUMENTATION (DBI) tools

– Valgrind

– DynamoRIO

– PIN

– GPGPU specific

• HARDWARE PERFORMANCE COUNTER (HPC) sampling

6 Chapter 2. Overview

http://www.sdsc.edu/pmac/tools/pebil.html
http://llvm.org
http://bprail.github.io/contech/
http://valgrind.org
http://dynamorio.org
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Sigil2 Documentation, Release 0.1.0

– architecture-specific

• simulation probes

– gem5

– SniperSim

– Multi2Sim

• and others

Each tool has its merits depending on the desired granularity and source of the event trace. Execution-driven simulators
are great for fine-grained, low-level traces, but may be impractical for a large workload. Most DBI tools do a good
job of obvserving the instruction stream of general purpose CPU workloads, but may not be useful when looking at
workloads that use peripheral devices like GPUs or third-party IP.

Sigil2 recognizes this and creates an abstraction to the underlying tool that observes the workload. Events are trans-
lated into Sigil2 event primitives that are then presented to the user for further processing. The tool used for event
generation is a Sigil2 frontend, and the user-defined processing on those events is a Sigil2 backend. Currently,
backends are written as C++ static plugins to Sigil2, although there is room for expansion, given enough interest.

2.2. Event Generation 7

http://www.gem5.org/Main_Page
http://snipersim.org/
http://www.multi2sim.org/

Sigil2 Documentation, Release 0.1.0

8 Chapter 2. Overview

CHAPTER 3

User Documentation

3.1 The Analysis Backend

Note: This documentation is still a WIP

3.1.1 Getting Started with Profiling

This example will demonstrate how to get started analyzing a workload. Typically it’s easier to analyze a trace file
than to directly analyze a workload. That is, it’s easier to generate a trace and post-process it multiple times, instead
of analyzing the application on-the-fly. Parsing a trace file containing relevant data is going to be faster and more
straightforward than running a workload multiple times and having Sigil2 filter all the potential metadata repeatedly.

Let’s do a simple example that counts each of the event primitives:

Todo: simplecount example

• creating the backend (design to be multithreaded)

• registering as a static plugin

• running

3.2 The Profiling Frontend

A frontend is the component that is generating the event stream. By default, this is Valgrind (mostly due to historical
reasons).

While it’s tempting to assume that the event generation just works™ you should be aware of the intrinsic nature of the
chosen frontend before making any large assumptions.

9

Sigil2 Documentation, Release 0.1.0

3.2.1 Valgrind

Valgrind is the default frontend. No additional options are required. The following two command lines are equivalent.

$ bin/sigil2 --backend=simplecount --executable=ls -lah
$ bin/sigil2 --frontend=valgrind --backend=simplecount --executable=ls -lah

Valgrind is a copy & annotate dynamic binary instrumentation tool. This means that the dynamic instruction stream
is grouped into blocks, disassembled into Valgrind’s VEX IR, instrumented, and then recompiled just-in-time.

3.2.2 DynamoRIO

DynamoRIO is not built with Sigil2 by default. To enable DynamoRIO as a frontend, build Sigil2 using the following
cmake build command:

$ cmake .. -DCMAKE_BUILD_TYPE=release -DENABLE_DRSIGIL:bool=true

DynamoRIO can now be invoked as a frontend:

$ bin/sigil2 --frontend=dynamorio --backend=simplecount --executable=ls -lah

DynamoRIO’s IR exists closer to the ISA than the IR used by Valgrind. Sigil2 converts DynamoRIO IR to event
primitives by inspection of each opcode.

Todo: mmm475 to fill in more details

3.2.3 Future

Additional frontends being explored include:

• LLVM-tracer

• Contech

• GPU Ocelot

3.3 FAQ

10 Chapter 3. User Documentation

CHAPTER 4

Backend Documentation

4.1 SimpleCount

4.1.1 Synopsis

$ bin/sigil2 --frontend=FRONTEND --backend=simplecount --executable=mybinary -
→˓myoptions

4.1.2 Description

SimpleCount is a demonstrative backend that counts each event type received from a given frontend. These events are
aggregated across all threads.

4.1.3 Options

No available options

4.2 SynchroTraceGen

4.2.1 Synopsis

$ bin/sigil2 --frontend=FRONTEND --backend=stgen OPTIONS --executable=mybinary -
→˓myoptions

11

Sigil2 Documentation, Release 0.1.0

4.2.2 Description

SynchroTraceGen is a frontend for generating trace files for the SynchroTrace simulation framework.

Each thread detected by SynchroTraceGen is given its own output trace file, named sigil.events-#.out. By
default, the output is directly compressed since the trace files can grow very large.

4.2.3 Options

-c NUMBER
Default: 100
Will compress all SynchroTraceGen compute events.
Each compute event will have a maximum of NUMBER local reads or writes

-o PATH
Default: ‘.’
All SynchroTraceGen output will be put in PATH

-l {text,capnp,null}
Default: ‘text’
Choose which logging framework to use.
Regardless of which logger is chosen, a sigil.pthread.out and sigil.stats.out

file will be output.
‘text’ will output an ASCII formatted trace in gzipped files.
‘capnp’ will output a packed CapnProto serialized trace in gzipped files.
‘null’ will not output anything.

12 Chapter 4. Backend Documentation

https://capnproto.org/

CHAPTER 5

Frontend Documentation

Each frontend generates one or more event streams to a Sigil2 backend analysis tool. Each frontend has it’s own
internal representation (IR) of events, so the process of converting frontend IR to Sigil2 event primitives is different
for each frontend. For example, Valgrind will disassemble each machine instruction into multiple VEX IR statements
and expressions; DynamoRIO annotates each instruction in a basic block with specific attributes; the current Perf
frontend only supports x86_64 decoding via the Intel XED library.

5.1 Valgrind

5.1.1 Synopsis

$ bin/sigil2 --frontend=valgrind OPTIONS --backend=BACKEND --executable=mybinary -
→˓myoptions

5.1.2 Description

Uses a heavily modified Callgrind tool, Sigrind, to observe Sigil2 event primitives and pass them to the backend.
Valgrind serializes all threads in the target executable, so only one thread’s event stream is passed to the backend at a
time. A context switch is signaled with a Sigil2 context event. Because threads are serialized by Valgrind, the target
executable is mostly deterministic.

5.1.3 Options

–at-func=FUNCTION_NAME
Default: (NULL)

–start-func=FUNCTION_NAME
Default: (NULL)

13

Sigil2 Documentation, Release 0.1.0

Start collecting events at FUNCTION_NAME
If (NULL), then start from beginning of execution

–stop-func=FUNCTION_NAME
Default: (NULL)
Stop collecting events at FUNCTION_NAME
If (NULL), then stop at the end of execution

–gen-mem={yes,no}
Default: yes
Generate memory events to Sigil2

–gen-comp={yes,no}
Default: yes
Generate compute events to Sigil2

–gen-cf={yes,no}
Default: no
Currently unsupported

–gen-sync={yes,no}
Default: yes
Generate synchronization (thread) events to Sigil2

–gen-instr={yes,no}
Default: yes
Generate ISA instructions to Sigil2
Only instruction addresses are currently supported

–gen-bb={yes,no}
Default: no
Currently unsupported

–gen-fn={yes,no}
Default: no
Sends function enter/exit events along with the function name
Be sure to compile with less optimizations and debug flags for best results

5.1.4 Multithreaded Application Support

The Valgrind frontend automatically supports synchronization events in applications that use the POSIX threads
library and/or the OpenMP library by intercepting relevant API calls.

14 Chapter 5. Frontend Documentation

Sigil2 Documentation, Release 0.1.0

Pthreads

Pthreads should be supported for most versions of GCC/libc, because the Pthread API is quite stable.

Pthreads support exists for any application dynamically linked to the Pthreads library.

See Static Library Support for applicatons that are statically linked.

OpenMP

Only GCC 4.9.2 is officially supported for synchronization event capture, because the implementation of the library
is more likely to change between GCC versions.

Dynamically linked OpenMP applications are not supported. Only Static Library Support exists.

Static Library Support

Applications that use a static Pthreads or OpenMP library must be manually linked with the sigil2-valgrind wrapper
archive. This can be found in BUILD_DIR/bin/libsglwrapper.a.

For example:

$CC $CFLAGS main.c -Wl,--whole-archive $BUILD_DIR/bin/libsglwrapper.a -Wl,--no-whole-
→˓archive

5.2 DynamoRIO

5.2.1 Synopsis

$ bin/sigil2 --num-threads=N --frontend=dynamorio OPTIONS --backend=BACKEND --
→˓executable=mybinary -myoptions

5.2.2 Description

Note: -DDYNAMORIO_ENABLE=ON must be passed to cmake during configuration to build with DynamoRIO
support.

DynamoRIO is a cross-platform dynamic binary instrumentation tool. DynamoRIO runs multithreaded applications
natively. This makes results less reproducible than Valgrind, however analysis is potentially faster on a multi-core
architecture. This enables multiple event streams to be processed at once, by setting –num-threads > 1.

5.2.3 Options

Todo: options

5.2. DynamoRIO 15

Sigil2 Documentation, Release 0.1.0

--num-threads=N

5.3 Intel Process Trace

5.3.1 Synopsis

$ bin/sigil2 --frontend=perf --backend=BACKEND --executable=perf.data

5.3.2 Description

Note: -DPERF_ENABLE=ON must be passed to cmake during configuration to build with Perf PT support.

Intel Process Trace is a new CPU feature available on Intel processors that are Broadwell or more recent. The trace is
captured via branch results. The entire trace is then reconstructed by perf by replaying the binary, including all shared
library loading and context switches. A side effect of only capturing branch results is that all runtime information
within the trace is lost, such as some memory access addresses; e.g. the Perf ‘replay’ mechanism does not support
replaying malloc results.

For more usage details, see: perf design document for Intel PT

For more technical details see: Intel Software Developer’s Manual Volume Three

5.3.3 Options

Note: The perf.data file is generated with: perf record -e intel_pt//u ./myexec

If you receive ‘AUX data lost N times out of M!’, try increasing the size of the AUX buffer. Otherwise a significant
of the portion of the trace may not be reproduced: perf record -m,AUXTRACE_PAGES -e intel_pt//u
./myexec

Todo: options

16 Chapter 5. Frontend Documentation

https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
https://software.intel.com/en-us/articles/intel-sdm

CHAPTER 6

Developer Documentation

Todo: section for developers

event primitives in depth

section for backend writing/multithreaded

frontend event generation

frontend IPC

frontend synchronization capture

Fig. 6.1: Sigil2 Flow from Frontend to Backend
Legend

17

Sigil2 Documentation, Release 0.1.0

18 Chapter 6. Developer Documentation

CHAPTER 7

About

Sigil2 comes from Drexel University’s VLSI & Architecture Lab, headed by Dr. Baris Taskin and in collaboration
with Tufts University’s Dr. Mark Hempstead.

The goal of Sigil2 is modular application analysis. It was formed from the need to support multiple projects that
study application traces, aimed at data-driven architecture design. This has included early hardware accelerator
co-design [SIGIL], as well as uncore design space exploration with multi-threaded workloads [SYNCHROTRACE]
[UNCORERPD]. Sigil2 is not interested in instrumenting the behavior of an application, but instead aims to classify
events in the application and present those events for further analysis. In this way, Sigil2 does not require that each
researcher have an in depth understanding of the binary instrumentation tools.

7.1 Why call it Sigil2?

The initial incarnation of Sigil was developed by Dr. Siddharth Nilakantan for his research into software-hardware
co-design [SIGIL]. He named it after Sigil, a city in Planescape: Torment. He also pronounced it “sih-gul”. The
current maintainer and developer of Sigil2, Michael Lui, has kept the name and pronunciation for historical purposes.
However, all of the underlying code and infrastructure has been rewritten and enhanced.

19

http://vlsi.ece.drexel.edu
http://drexel.edu/ece/contact/faculty-directory/TaskinBaris/
http://engineering.tufts.edu/ece/people/hempstead.htm
https://github.com/snilakan/Sigil
http://torment.wikia.com/wiki/Sigil
https://github.com/mdlui

Sigil2 Documentation, Release 0.1.0

20 Chapter 7. About

CHAPTER 8

Features

• Flexible application analysis

– Use multiple frontends for capturing software workloads like Valgrind and DynamoRIO

– Use custom C++14 libraries for analyzing event streams

• Platform-independent events

– Straight-forward and extensible format, simplifying analysis

21

Sigil2 Documentation, Release 0.1.0

22 Chapter 8. Features

CHAPTER 9

Installation

See the Quickstart for information installation instructions.

23

Sigil2 Documentation, Release 0.1.0

24 Chapter 9. Installation

CHAPTER 10

Contribute

Source Code: https://git.io/sigil2

Issue Tracker: https://github.com/VANDAL/sigil2/issues

25

https://git.io/sigil2
https://github.com/VANDAL/sigil2/issues

Sigil2 Documentation, Release 0.1.0

26 Chapter 10. Contribute

CHAPTER 11

Support

Please contact our mailing list for any issues or concerns: sigil2@googlegroups.com

27

mailto:sigil2@googlegroups.com

Sigil2 Documentation, Release 0.1.0

28 Chapter 11. Support

CHAPTER 12

License

This project is licensed under the BSD3 license.

29

https://github.com/mikelui/sigil2/blob/master/COPYING

Sigil2 Documentation, Release 0.1.0

30 Chapter 12. License

Bibliography

[SIGIL] S. Nilakantan and M. Hempstead, “Platform-independent analysis of function-level communication in work-
loads”, 2013 IEEE International Symposium on Workload Characterization (IISWC), pp. 196 - 206, 2013.

[SYNCHROTRACE] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin and M. Hempstead, “Synchro-
trace: synchronization-aware architecture-agnostic traces for light-weight multicore simulation”, 2015 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 278 - 287, 2015.

[UNCORERPD] K. Sangaiah, M. Hempstead and B. Taskin, “Uncore RPD: Rapid design space exploration of the un-
core via regression modeling”, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 365 - 372, 2015.

31

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6704685
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6704685
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095813
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095813
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7095813
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7372593
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7372593
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7372593

	Quickstart
	Building Sigil2
	Running Sigil2
	Dependencies

	Overview
	Workloads
	Event Generation

	User Documentation
	The Analysis Backend
	The Profiling Frontend
	FAQ

	Backend Documentation
	SimpleCount
	SynchroTraceGen

	Frontend Documentation
	Valgrind
	DynamoRIO
	Intel Process Trace

	Developer Documentation
	About
	Why call it Sigil2?

	Features
	Installation
	Contribute
	Support
	License
	Bibliography

